Hierarchical Window Centric Method of Modeling Spatial Co-Location Patterns on Spatial Database

نویسنده

  • G. Kiran Kumar
چکیده

With the growing technology, most of the focus is on spatial data mining. Spatial data mining refers to the extraction of unknown and unexpected information from spatial data sets of massive, high dimensionality and complex spatial databases. Spatial data mining is a process to discover related knowledge, potentially constructive and high utility patterns embedded in geographic Information. Application specific tools for extracting efficient and useful information from spatial data sets can be of great importance to the organizations which own, generate and manage large databases. The objective of co-location pattern mining is to find the subset of features frequently located together in the same region. Three modeling methods for co-location patterns[16,19] are event centric model, feature centric model and window centric model. We have proposed a new method for modeling co-location patterns “Hierarchical Window Centric Model”, which is an extension of Window Centric Model. We would carry out experimental evaluations and performance tuning in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiple window-based co-location pattern mining approach for various types of spatial data

Studies on spatial co-location mining required distance threshold to define spatial neighbourhood (Shashi Shekhar and Yan Huang(2001); Yoo and Shekhar (2004, 2006); Yasuhiko Morimoto(2001); Koperski and Han(1995); Ding et al. (2008)) However, it is problematical for users to choose suitable threshold values because they lack prior knowledge about spatial data. Spatial neighbourhood has been def...

متن کامل

Event Centric Modeling Approach in Colocation Pattern Snalysis from Spatial Data

Spatial co-location patterns are the subsets of Boolean spatial features whose instances are often located in close geographic proximity. Co-location rules can be identified by spatial statistics or data mining approaches. In data mining method, Association rule-based approaches can be used which are further divided into transaction-based approaches and distance-based approaches. Transaction-ba...

متن کامل

Mining Of Spatial Co-location Pattern from Spatial Datasets

Spatial data mining, or knowledge discovery in spatial database, refers to the extraction of implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial databases. Spatial data mining is the process of discovering interesting characteristics and patterns that may implicitly exist in spatial database. A huge amount of spatial data and newly emerging concept of Spati...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

A Survey on Spatial Co-location Patterns Discovery from Spatial Datasets

Spatial data mining or Knowledge discovery in spatial database is the extraction of implicit knowledge, spatial relations and spatial patterns that are not explicitly stored in databases. Co-location patterns discovery is the process of finding the subsets of features that are frequently located together in the same geographic area. In this paper, we discuss the different approaches like Rule b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013